• Węże przemysłowe Norres

    Ponieważ większość ludzi lepiej przyswaja dane patrząc na obrazki a nie czytając napis, przedstawię wszystkie obrazkowe dane dotyczące zastosowania węży technicznych Norres

  • Znaczniki do stali

    Znaczniki to narzędzia do znakowania skrzynek, narzędzi, konstrukcji wykonanych z stali,tworzywa.

  • Przystawka do wiercenia rur

    Przystawka (imadło) do precyzyjnego wiercenia otworów w rurach umożliwia wycięcie całego otworu lub jego części w rurach o średnicy

Właściwości mechaniczne i magnetyczne CZĘŚCI ZŁĄCZNYCH ZE STALI NIERDZEWNYCH, ODPORNYCH NA KOROZJĘ (w oparciu o PN-EN ISO 3506: 2000). Norma ta jest z roku 2000, od tej pory pojawiły się nowe gatunki stali nierdzewnych, jednak większa część informacji jest nadal aktualna i przydatna.


Pierwsza częśc będzie dotyczyła charakterystyki grupy A
Stale z grupy A (austenityczne)
W ISO 3506 podano pięć głównych rodzajów stali austenitycznych od A1 do A5. Nie mogą one być hartowane i poza kilkoma wyjątkami są niemagnetyczne. Stale nierdzewne przeznaczone do hartowania to stale martenzytyczne, stanowią jedną z grup stali nierdzewnych o znacznych właściwościach wytrzymałościowych. Używa się je na narzędzia tnące (elementy maszyn tnących, noże surwivalowe, sprzęt chirurgiczny)i inne. Stale tej grupy nadają się do zastosowań w mało agresywnych środowiskach korozyjnych. Nie znajdują więc zastosowania do produkcji elementów złącznych ( śruby, nakrętki ze stali nierdzewnej).
W celu zmniejszenia podatności na utwardzanie, do stali rodzajów od A1 do A5 można dodać miedzi.
Ponieważ tlenek chromu daje większą odporność stali na korozję, dla stali niestabilizowanych rodzajów A2 i A4 bardzo ważna jest niska zawartość węgla. Z powodu wysokiego powinowactwa chromu do węgla powstaje węglik chromu zamiast tlenku chromu, który jest bardziej właściwy w podwyższonych temperaturach.
Dla stali stabilizowanych typy A3 i A5, składniki Ti, Nb lub Ta reagując z węglem powodują w pełnym zakresie powstawanie tlenku chromu, co redukuje zagrożenie powstania korozji między krystalicznej.
Do zastosowań morskich oraz im podobnych wymagane są stale o zawartościach Cr i Ni około 20% i od 4,5% do 6,5% Mo.
Stale austenityczne o wyższej zawartości niklu i w poniektórych przypadkach azotu są przeznaczone do głębokiego tłoczenia. Wzrost stężenia niklu w składzie chemicznym tych stali umożliwia wyższą tłoczność bez zmiany własności magnetycznych.
Przy wysokich naciskach powierzchniowych trące powierzchnie mogą się zacierać. Może to zachodzić na gwincie śrub i nakrętek, dotyczy powierzchni styku, nierdzewne są do tego bardziej skłonne od stali normalnych. Dla połączeń sprężystych i przy określonych warunkach wykorzystywania zaleca się użycie pary materiałów A2 i A4, lub użyć smar jako warstwę oddzielającą.

Śruby, nakrętki i podkładki ze stali nierdzewnej i kwasoodpornej - https://domtechniczny24.pl/elementy-z%C5%82%C4%85czne-ze-stali-nierdzewnych-a2-a4.html

 


Wszystkie części złączne ze stali nierdzewnej austenitycznej są zwykle niemagnetyczne, ich przenikalność magnetyczna wynosi ok. 1. Stale o strukturze ferrytycznej, martenzytycznej, ferrytyczno-austenitycznej-Duplex są magnetyczne.
Przeróbka plastyczna na zimno stali austenitycznych powoduje częściowe przekształcenie fazy austenitycznej w martenzyt, który jest ferromagnetyczny. Zjawisko to zależy od składu chemicznego stali w szczególności od udziału pierwiastków stabilizujących fazę austenityczną. Zjawisko to niweluje się przez wyżażanie stali i gwałtowne schłodzenie. Taki zabieg powoduje,że powstały martenzyt zostaje przekształcony ponownie w paramagnetyczny austenit.
Także skład chemiczny ma duży wpływ na magnetyczność stali nierdzewnej.
Pierwiastki stabilizujące fazę austenityczną (nikiel, azot) zmniejszają skłonność stali austenitycznych do umocnienia przez zgniot. Dodatek molibdenu, tytanu i niobu wpływa na stabilizację fazy ferrytycznej.

Dzień dobry
W poprzednim artykule dotyczącym stali nierdzewnej opisałem jej właściwościwości. Dzisiaj przedstawię zagadnienie oznakowania śrub i nakrętek ze stali A2 i A4.
W trakcie doboru śrub i nakrętek należy kierować się głównie ich wymiarami, ale również wielkie znaczenie ma oznakowanie, gdyż informuje nas, o tym do jakich warunków przeznaczony jest konkretny stop stali nierdzewnej z jakiego zrobione są nasze nakrętki czy też śruby.

Na zdjęciu śruba kwasoodporna A4 z logiem producenta.


Wszystkie śruby z łbem sześciokątnym i śruby z łbem okrągłym i gniazdem sześciokątnym o nominalnej średnicy gwintu wynoszącej 6mm lub więcej, muszą być wyraźnie oznakowane. Znakowanie to powinno zawierać gatunek stali i klasę wytrzymałości oraz znak identyfikacyjny producenta śruby. Pozostałe typy śrub mogą być, jeżeli to tylko możliwe, znakowane w ten sam sposób i tylko na łbie. Uzupełniające znakowanie jest dozwolone, pod warunkiem jednak, iż nie będzie źródłem niejasności. Zaś w przypadku śrub dwustronnych dozwolone jest znakowanie na nie gwintowanej stronie śruby, ale w przypadku gdy nie jest to możliwe, dopuszcza się znakowanie na nakrętkowym końcu śruby. Nakrętki oznakowane są w formie nacięcia na jednej przestrzeni, kiedy znajduje się na powierzchni nośnej nakrętki dozwolone jest jeszcze jedno dodatkowe znakowanie na boku nakrętki. Jedynym rodzajem śruby, jaki nie musi być oznakowany jest śruba bez łba z gwintem na całej długości, ale z doświadczenia wiem, że poniektórzy fabrykanci tego rodzaju śrub lokują odpowiednie oznaczenia, co ułątwia trafny zakup.
Jak już wspomniałem, znakowanie ma bardzo duże znaczenie przy wyborze odpowiednich, do zadania, z jakim potrzebujemy się uporać, nakrętek i śrub. Trzeba zwracać szczególną uwagę na oznaczenie drukowaną literą A przy grupach i rodzajach stali, bowiem dotyczy ich specyficznych własności i zastosowań. Pamiętajcie państwo o tym, gdy następnym razem będziecie wybierać śruby lub nakrętki ze stali nierdzewnej.

Popularność stali nierdzewnych
Ciężko nie uznać, że stale nierdzewne mają już od jakiegoś okresu przeważającą pozycję, jako materiał do wytwarzania urządzeń w przemyśle spożywczym, i dekoracyjnym. Materiał ten, choć kosztowny w zestawieniu z stalą konstrukcyjną, dominuje a to dzięki odporności na korozję. Stale te cały czas zachowują satynową lub wypolerowaną powierzchnię niezależnie od warunków atmosferycznych, kontaktu z wysoce korozyjnymi artykułami spożywczymi, detergentami. Estetyka nie jest oczywiście pojedynczą zaletą, najważniejsza to brak zanieczyszczeń, jakie mogłyby się przedostać do przetwarzanego pożywienia, skazić go lub odmienić jego właściwości, smak, kolor. Producenci wina wiedzą, że moszcz nie powinien mieć kontaktu z stalą, bo żelazo przejdzie do soku i w dalszym czasie może doprowadzić do jego zepsucia. Podobnie dzieje się z innymi produktami spożywczymi, kapusta kiszona, soki, piwa, mięsa, pulpy warzywne i przetwory mleczne ( blachy, elektrody - https://domtechniczny24.pl/elektrody-do-stali-nierdzewnych.html  i pręty do spawania tig iem). Właściwości przeciwrdzewne są w tych stalach stałe biorąc pod uwagę obróbkę termiczną, czyli gotowanie, smażenie lub zamrażanie. W związku z tym nie wymagają dodatkowych powłok ochronnych. I są na dłuższą metę tańsze w eksploatacji.


Dzieje się tak, ponieważ chrom znajdujący się w stali tworzy ochronną warstwę tlenku na powierzchni. Tlenki tworzą się, jeżeli tylko jest dostęp tlenu. Najciekawsze jest to, że jeżeli zlikwidujemy warstwę tlenku na przykład w czasie mycia lub szorowania to taka warstwa mając kontakt z wszechobecnym tlenem zaraz się odnowi. Innymi słowy możemy stwierdzić, że sama się regeneruje. Gorzej jest w czasie obróbki ściernej lub cięcia. Istnieje w owym czasie niebezpieczeństwo przedostania się np. siarki z materiałów ściernych na powierzchnię stali i to może spowodować korozję. Ważne jest, więc stosowanie tylko narzędzi ściernych lub spawalniczych przystosowanych do odróbki stali INOX.
Stale nierdzewne są trochę trudniejsze w obróbce niż stale konstrukcyjne. W większości wypadków wiercenie, cięcie i obróbka powierzchni przysparza więcej kłopotów, ale o tym napiszę innym razem.

Copyright © 2019. Warsztat Technika  Rights Reserved.